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Abstract

A P2P file distribution system like BitTorrent
is comprised of peers downloading the same file
at the same time while uploading pieces of the
file to each other. Policies for resource allocation
make each peer’s download rate proportional to
their upload rate. Since each peer is responsi-
ble for maximizing its own download rate, peers
would seemingly upload to the peers that pro-
vide the best download rate. But this doesn’t
address the issue that there are unused connec-
tions to undiscovered peers that could provide
a better download rate. By modeling each peer
as a contextual bandit, peers have a more ro-
bust method for discovering peers with poten-
tially better download rates. We will show that
the bandit model naturally causes peers to ag-
gregate in groups that maximizes download rates
for group members. We use an agent-based mod-
eling approach in the simulation to explore the
system’s behavior.

1 Introduction

Peer-to-peer (P2P) applications do not have a
central authority. Peers form networks with
other peers and share resources together creat-
ing inexpensive, highly scalable and robust plat-
forms [1]. P2P file distribution systems like Bit-

Torrent [2] redistributes the cost of uploading
content to downloaders by offloading that cost to
multiple peers. To create a system where peers
are motivated to exchange resources, most P2P
file distribution systems follow a tit-for-tat strat-
egy. This strategy enforces behavior where a
peer can only receive resources equivalent to the
resources it has given. Studies based on game
theoretic approaches assert that the resource re-
ciprocation strategy can lead to a Nash Equi-
libria or pareto optimality for download rates
amongst all peers [2] [1]. It has also been pro-
posed that by modeling P2P as a Markov Deci-
sion Process (MDP), the long-term utilities, the
download rates, are maximized [4] [5]. So within
the constraints of a tit-for-tat strategy, peers es-
timate other how much resources they may po-
tentially receive from another peer to determine
how much resources they should allocate. The
MDP addresses the resource reciprocation prob-
lem within a clearly defined group of peer but
does not address the issue of finding new peers
that may result in better download rates. The
BitTorrent protocol has an exploration rule to
force peers to allocate resources to a new peer
regardless of the download rate from that peer
in a round-robin fashion. The peer is periodi-
cally rotated and Cohen [2] describes the behav-
ior as analogous to always cooperating on the
first move in the prisoner’s dilemma.
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To address these limitations, we model each
peer as containing a contextual bandit to explore
and find the best peers to exchange resources
with. The peers will still follow a ”tit-for-tat”
strategy only now with the additional ability to
explore and find a potentially better peer. A
simulation using agent-based modeling demon-
strates that peers settle on groups that maxi-
mize each other’s download rates. We show that
peers can maximize their download rates in a
realistic setting where the time horizon is not
long. The bandit strategy avoids the issue of
estimating state transitions and the storage of
the numerous state descriptions as required in
the MDP solution [4]. We will show that peers
will naturally form groups that maximize each
other’s download rates due to autonomy of each
peer striving to maximize their download rates.
This avoids the determining the profit a peer can
gain in joining an existing group [1].

2 Our Agent-based Model

In this section, we describe the P2P system
model.

Peers in P2P systems congregate with other
peers that possess content they desire. Con-
sider an ecosystem of N peers where each peer
contains content that all other peers need. So
all N peers can potentially exchange resources
with other peers. Each peer is identified as P1,
P2, . . . , PN . A peer chooses to allocate re-
sources to other peers knowing that they must
abide by the tit-for-tat policy and reciprocate re-
sources. These peers will reciprocate a portion
of their resources, the maximum upload band-
width, that is scaled according to the received
resources from that peer. For example, a peer
Pi, where i ∈ [1, N ], receives a download rate

of 30 Mbps from its peers. 30 Mbps is the sum
of all the allocated upload bandwidth from its
peers. Suppose a peer Pj , where j ∈ [1, N ] and
j 6= i is responsible for 10 Mbps of the total 30
Mbps. If peer Pi has a maximum possible upload
bandwidth of 12 Mbps, peer Pi must reciprocate
4 Mbps to peer Pj . The reciprocation is propor-
tional to the resources it received from peer Pj

and the total amount it has received.
12Mbps× 10Mbps

30Mbps = 4Mbps
Peers do not have to reciprocate resources if

the resources reciprocated are less than a sys-
temwide defined minimum. This prevents peers
from having their resources thinned-out from re-
ciprocating too many peers. If a peer has to
reciprocate to too many peers, its resources can
effectively be dwindled to a point that adversely
affects the quality of service. By creating a min-
imum requirement, we can guarantee a quality
of service.

In a game-theoretic interpretation of this
model, peers are self-interested because they will
explore to maximize their download rate. Peers
in this model and in the simulation will be het-
erogenous. Their maximum upload rates do not
have to be equal.

The problem of finding a new peer or remain-
ing loyal to the current reciprocation is naturally
a classical exploration vs. exploitation scenario.
This motivates the bandit solution proposed in
the next section. As dictated by the bandit algo-
rithm employed by each peer, a peer can choose
to keep their reciprocation amongst the current
peers or they can identify a new peer to give
resources to, hoping that the subsequent recip-
rocation will be beneficial.

This paper will not discuss how pieces of con-
tent are selected and in what order they are se-
lected. It is an important aspect affecting the
performance of the system [2]. In this paper, we
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will assume it is adequately handled and is inde-
pendent to the resource reciprocation’s impact
on the performance of the network.

3 Contextual Bandits

Each peer implements a contextual bandit algo-
rithm to dictate the exploration and exploitation
for resource allocation with new peers. The con-
textual bandit differs from the traditional multi-
armed bandit setting because it takes advantage
of the information inherent in the environment.
In this paper, we use the LinUCB algorithm de-
scribed by Li [3].

In the classical K -armed bandit setting, an
agent interacts with the environment amongst
a set of K arms. The world reacts by giving the
agent a reward. The multi-armed bandit learns
a policy to dictate whether it should exploit the
best arm, based on the history of rewards, or ex-
plore other arms. Exploration is motivated by
the hope of finding a rewarding arm. Most algo-
rithms taper their exploration as time progress
because evidence for the optimal arm is strongly
supported by the long history of rewards. The al-
gorithm should maximize its rewards by exploit-
ing the best arm. This setting does not account
for extra information that is typically available
in the environment.

In the contextual bandit setting, an agent in-
teracts with the environment given a context
from the setting. This additional information
should allow the agent to optimize arm selection
based on the context. Consider a context vector
x of length L where each component xi ∈ [0, L)
corresponds to a feature of the context. To be ro-
bust, contextual bandit algorithms aim to handle
an infinite vector-space of contexts. The arms
are usually constrained and comprised of a pre-

defined set.

4 Contextual Bandit as Peers

To model each peer as a contextual bandit, we
assume that each peer knows all other peers
with the content they desire but they do not
know their maximum possible upload band-
width. Peers will always reciprocate resources.
That is, for every round, if another peer provides
them resources, they must reciprocate. Only if
by reciprocating resources causes them to give
any peers less than the systemwide minimum al-
location will a peer not reciprocate. This be-
havior creates a guaranteed quality of service
since no peer should ever experience a download
rate less than the systemwide minimum. How-
ever, since the employed policy is ”tit-for-tat”, a
peer who has a maximum upload rate less than
the systemwide minimum will be unable to join
the system. This behavior is also responsible
for peers to settling in subgroups where mem-
bers subgroup members mutually benefit from
each other and choose not to interact with other
peers. The contexts in this scenario are the re-
ceived resources from other peers. This context
will be used to compute the resource reciproca-
tions. Each arm is a peer that Pi can add to
it’s resource reciprocation. For each arm, a peer
Pi will consider the estimated resources peer Pj

may allocate in addition to the received resources
from other peers. The hypothetical resource
reciprocation is computed with this additional
peer. Each peer tracks an estimate of other
peers’ resource reciprocation. This is tracked as
an average. So if Pi has received 10 Mbps, 0
Mbps, and 2 Mbps from Pj in 3 different trials,
Pi’s estimated resources reciprocation from Pj

will be 3 Mbps. These will be discussed as the
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features in the LinUCB algorithm.

4.1 Algorithm

The contextual bandit algorithm proceeds in dis-
crete rounds, t = 1, 2, 3, . . .. For round t:

1. The algorithm receives a state St where each
component sj,t ∈ St represents the resources
received from peer Pj and a set At of arms
with a feature vector xt,a for each arm a ∈
At. Both the state St and the feature vector
xt,a is referred to as the context.

2. Based on observed rewards in previous
rounds, the peer chooses an arm at ∈ At.
It subsequently receives a reward ra,t.

3. The algorithm updates its reward estimate
from the observation (xt,a, at, ra,t).

4.2 Features for Contexts

A peer Pi will consider 2 features for every
peer: the estimated resource reciprocation and
resource to allocate. The algorithm will max-
imize rewards assuming rewards are correlated
with monotonically increasing features. Cer-
tainly, a higher estimated resource reciprocation
from a peer correlates with a higher reward. The
other feature is not obvious at first.

We have an optimistic approach to resource
reciprocation: the more we can give, the more
likely we can receive in turn. That is the rea-
soning behind the second feature. A simple first
choice for a feature could have been the ”bene-
fit” ratio: how we receive over how much we have
to give. This would certainly favor peers that
we can gain a lot of resources without giving up
much of our own. It follows the monotonously-
increasing requirement for the correlation of re-
wards with feature. But this leads to oddities

Algorithm 1 LinUCB as applied to P2P peers.

0: Inputs: α ∈ R
1: for t = 1, 2, 3, . . . , T do
2: Observe resource reciprocation Si,t

3: for all Pj ∈ group, i 6= j do
4: if no reciprocation estimate for Pj then
5: APj ← Id (d-dim identity matrix)
6: bPj ← 0d×1 (d-dim zero vector)
7: end if
8: θ̂Pj ← A−1Pj

bPj

9: xt,Pj ← reciprocation(Si,t, Pj .estAlloc)

10: pt,Pj ← θ̂TPj
xt,Pj + α

√
xt,PT

j A−1
Pj

xt,Pj

11: end for
12: Choose peer Pj = arg maxPj∈group pt,Pj to

add to reciprocation.
13: Observe payoff rt
14: APj ← APj + xt,Pjx

T
t,Pj

15: bPj ← +rtxt,Pj

16: end for

in the simulations. Very low upload-rate peers
continuosly spam high-bandwidth peers because
the ratios explode when the peer’s upload-rate
is very small. Using the optimistic approach fits
better with the ”tit-for-tat” strategy.

It is worth mentioning the fallbacks of using an
average for the estimated resource reciprocation
for a peer. A peer can potentially gain more
resources and thus, be of great value to other
peers. However, it previously appeared as weak
to other peers. To adjust the average in the eyes
of the other peers, the newly-improved peer must
work against a possibly large sample of resource
reciprocations in order to change it’s estimated
resource reciprocation in the eyes of other peers.

4



Table 1: Peers maximum upload rate, in Mbps
Peer 0 28

Peer 1 18

Peer 2 15

Peer 3 23

5 Simulation Results

Simulations are configured in Python. At each
round, each peer is allowed the opportunity to
explore or exploit. Initially, all peers initialize
their expected reciprocated resources from all
other peers as the system minimum.

In this first simulation, we have a group of 4
peers, similar to the simulation found in [4] [5].
Their maximum upload rate is given by Table 1.
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Figure 1: Cumulative Rewards for each peer

Figure 1 displays the cumulative reward of
each peer in the group and Figure 2 displays the
instantaneous reward per round for each peer.

Each peer goes through a period of exploring
and then settling on an optimal resource recipro-
cation that maximizes their download rate. This
period of exploration can be seen in the figures.
In Figure 1, the periods of exploration result

in varying rewards which manifests as lines of
changing slope in the cumulative reward plot.
In Figure 2, the periods of exploration result in
varying rewards which manifests as noisy vari-
ances in the instantaneous reward plot. Many of
the LinUCB algorithm traits can be identified in
Figure 2. At steady-state, the resource recipro-
cation is described as an adjacency matrix in Ta-
ble ??. Because resources allocation is inherently
a one-directional action, these edges are directed
edges so it’s important to interpret the rows and
columns. When read by rows, each column rep-
resents a peer and how much resources it gives
to the peer identified in the row. For example,
Peer 0 receives an 18 Mbps download rate from
Peer 1 and 8.7 Mbps from Peer 3. Note that the
sum of each column equals the maximum that
the peer can give.

Table 2: Steady-state Resource Allocation, in
Mbps

Peer 0 Peer 1 Peer 2 Peer 3

Peer 0 0 18 0 8.7

Peer 1 18.9 0 0 0

Peer 2 0 0 0 14.3

Peer 3 9.1 0 15 0

Most peers begin with 0 reward because no re-
sources are allocated to it and thus they are not
required to reciprocate resources with any other
peers. Notice that P0 begins with a non-zero
amount of reward. At these early rounds, peers
will favor exploring because they want to find
reciprocating peers. Because of the determinis-
tic nature of LinUCB’s exploration, all peers ex-
plore P0 first due to the index of P0 arm in the
set of arms. This is why immediately, bandit
0 has a nonzero instantaneous reward for round
0. Bandit 0, since it can’t give resources to it-
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self, will give resources to the closest index, P1,
which is why P1 also begins with a nonzero in-
stantaneous reward. Bandit 1 also receives a
spike, but not immediately, in reward due to
collisions in exploring peers. Not all peers are
satisfied by P0 reciprocation and thus they ex-
plore the next arm which happens to be P1. As
rounds progress, each peer is updating its esti-
mation of other peers’ upload rates. Peers who
can’t reciprocate because they need to adhere
to the systemwide required upload rate or give
relatively low upload rates have lower estimated
upload rates. A peer is likely to give resources
to these peers knowing that they will receive lit-
tle or no resources in return. They choose to
exploit their best resource allocation. So then
peers settle amongst a subgroup of peers whose
resource reciprocation maximizes their download
rate. They explore less and will only give re-
sources to members of the subgroup.

5.1 Group Formation

Because as rounds progresses, peers often stay
in the same subgroup because they have iden-
tified, with stronger confidence as more rounds
progress, the most beneficial peers to maximize
their download rates. This is more evident in
a large group of peers. In Figure 3, a group of
50 peer settle into subgroups after 1000 rounds.
Colored in blue are peers who do not receive
any resources. If there are is an edge present
with a blue peer, it means they are giving re-
sources yet they are being reciprocated. Light
blue peers have only one peer that is allocating
them resources. Orange peers have more than
one peer allocating them resources. Note also
that there are peers that are alone. These are
peers whose maximum possible upload rate is
less than the system’s required minimum. Since
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Figure 2: Instantaneous Rewards for each peer

Figure 3: Subgrouping in a 50-Peer Group.
Blue: not receiving resources. Light Blue: only
one reciprocating peer. Orange: more than one
reciprocating peer.
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they can’t satisfy the minimum required resource
allocation, they receive none in return.

Using the contextual bandit algorithm for ex-
ploration, the problem of determining the benefit
for a peer joining an existing group is avoided.
Peers simply explore to find the optimal peers
and groups will naturally form when they set-
tle amongst a set of beneficial peers. Computing
the benefit of joining an existing group as de-
scribed by Buragohain et. al. [1] involves solv-
ing an N×N interaction matrix between hetero-
geneous peers by which no closed form solution
exists.

6 Application

The contextual bandit creates a system where
a minimum quality of service is guaranteed but
not everybody can participate.

6.1 Robustness

Policies such as the differential service policy
”tit-for-tat” are rule-based. The bandit algo-
rithm alone is not enough to handle all the use
cases and failure modes that occur in a P2P sys-
tem. While the bandit algorithms improve upon
the search of better peers, additional rules should
be defined to improve the robustness of the P2P
system. In this section, we will discuss the ro-
bustness of the P2P with only the contextual
bandit algorithm and no other rules defined.

6.1.1 Joining Peer

Consider an existing group of peers in steady-
state resource reciprocation and a new peer joins.
Table 1 contains each peers’ maximum upload
rate. This is the maximum amount of resources
each peer can give.

In this scenario, a fifth peer will join and its
maximum upload rate is 10 Mbps. This peer
is identified as ”Peer 4”. Their steady-state re-
source allocation is decribed in 2. Figure 4 shows
the instantaneous rewards of the peer that joined
the group. Note that the peer joined at round
t = 50 so its reward, the download rate, is 0 up
to that time. Similarly in Figure 5, notice the
changes in the subgroup at round t = 50.

Figure 4: Instantaneous rewards of the bandit
that joined the subgroup.

Table 3: New steady-state Resource Allocation
1 of 2, Mbps

Peer 0 Peer 1 Peer 2 Peer 3 Peer 4

Peer 0 0 18 0 8.7 0

Peer 1 18 0 0 0 0

Peer 2 0 0 0 14.3 0

Peer 3 0 0 15 0 10

Peer 4 10 0 0 0 0

Up to t = 50, the group has settled on a
steady-state resource allocation. When peer 4
joins, it perturbs the system. Notice in both
Figure 4 and Figure 5, the resource reciproca-
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Table 4: New steady-state Resource Allocation
2 of 2, Mbps

Peer 0 Peer 1 Peer 2 Peer 3 Peer 4

Peer 0 0 18 0 0 10

Peer 1 18.9 0 0 0 0

Peer 2 0 0 0 13.8 0

Peer 3 9.1 0 15 0 0

Peer 4 0 0 0 9.2 0

tion does not settle and there is noise. The state
flips between 2 states and they are shown in 3
and 4.

The reason for this fluttering of states is be-
cause the expected rewards of 2 different arms
are close in value so the algorithm constantly
switches between the two. For peer 4, it debates
between peer 0’s 10 Mbps or peer 3’s 9.2 Mbps.
For peer 0, it debates between peer peer 4’s 10
Mbps or peer 3’s 8.7 Mbps. For peer 3, it de-
bates between peer 0’s 9.1 Mbps or peer 4’s 10
Mbps. Notice that other peers also receive re-
sources from peer 4’s exploration, though only
momentarily. Peers 1 & 2 remain mostly the
same since peer for can only offer them 10 Mbps,
less than their current download rate of 18 and
14.3 Mbps respectively.

In a deployed system, this issue is undesir-
able because the changing of states can inter-
rupt downloads. A new feature can be introduce
which is the potential gain for leaving an incom-
plete download.

6.1.2 Dropping Peer

Consider an existing group of peers in steady-
state resource reciprocation and a peer drops.
Refer back to Table 1 which contains each peers’
maximum upload rate. This is the maximum
amount of resources each peer can give.

We consider the group before with all peers,
peers 0 through 4. Their steady-state resource
reciprocation can described by Table 4. Note
that unlike in the previous scenario where the
peer joins, the states do not flutter here even
though they are similarly configured.

In this scenario, the fifth peer, Peer 4, will
drop and its maximum upload rate is 10 Mbps.
Table 5 shows the steady-state of the new sys-
tem with one less peer. Notice that after, the
peers form couples, only exchanging their re-
sources with one other peer and giving that peer
all their resources.

Table 5: New steady-state Resource Allocation,
Mbps

Peer 0 Peer 1 Peer 2 Peer 3

Peer 0 0 18 0 0

Peer 1 28 0 0 0

Peer 2 0 0 0 23

Peer 3 0 0 15 0

Figure 6 shows the instantaneous rewards of
the peer that dropped from the group. Note that
the peer dropped at round t = 50 so its reward,
the download rate, is 0 after that time. Similarly
in Figure 7, notice the changes in the subgroup
at round t = 50. Peer 3 has the most signif-
icant loss because it was exchanging resources
exclusively with peer 4. Notice that peer 3 oc-
casionally explores peer 1 by giving it resources,
more so as rounds progress. This is evident by
peer 2’s loss of rewards and peer 1’s positive gain
of rewards. However, peer 3 sees that peer 2 is
the only once reciprocating because peer 1 ex-
changes only with peer 0.

Notice that the state described by 5 is different
from the state described by 2.

With the addition of the bandit exploration,
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Figure 5: Instananeous rewards of the subgroup
that experience a new peer joining.

Figure 6: Instantaneous rewards of the bandit
that dropped from the subgroup.

there should be additional rules that help the
group (or subgroups) to recover from a dropped
peer or take advantage of a new peer.

We assert that this robustness can be extended
to cases where peers have changing maximum
upload bandwidth that they can allocate.

7 Conclusion

While the MDP approach is successful, key is-
sues are introduced when considering real user
behaviors. In deployment, there are high churn
rates because peers rarely connect for more than
a few hours [2]. The shorter than expected time
horizon also works in opposition to the estima-
tion of other peers’ behaviors. As proposed by
Park [4], a peer can identify its state transition
probabilities based on the history of resources
reciprocation. A shorter time horizon impedes
the quality of the estimation of state transition
probabilities. The bandit algorithm does away
with these issues and abstracts all those issues
as a explore vs. exploit scenario.
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